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SUMMARY

A two-part program was carried out to establish the feasibility of producing

directionally solidified eutectic alloy composites by the edge-defined, film-fed

growth process (EFG). In the EFG process, the liquid alloy is conducted to the top

surface of a die by capillarity and growth occurs from a film of liquid (meniscus) on

top of the die. The determination of a die material wetted by and chemically inert to

the liquid alloy formed the first major task of the program. Since most eutectic

alloys of interest require steep temperature gradients for plane front solidification,

the second major task of the program was to show that suitable temperature gradients

could be attained.

The three eutectic alloys which were investigated were y + 6, y/y' + 6, and

a Co-base TaC alloy containing Cr and Ni. Investigations into the compatibility and

wettability of these metals with various carbides, borides, nitrides, and oxides were

carried out by means of soaking tests in which sample coupons were held in contact

with the molten alloys for periods up to 5 hr. Metallographic examination was sub-

sequently used to determine the nature and extent of the interaction. These investi-

gations disclosed that compounds with the largest (negative) heats of formation were

most stable but poorest wetting. Nitrides and carbides had suitable stability and low

contact angles but capillary rise was observed only with carbides. Oxides would not

give capillary rise but would probably fulfil the other wetting requirements of EFG.

Tantalum carbide was selected for most of the experimental portion of the program

based on its exhibiting spontaneous capillary rise and satisfactory slow rate of

degradation in the liquid metals.

HfC behaved similarly to TaC but quickly plugged up during growth runs. The

only other material successfully used in growth trials was tungsten. In this case

lifetime of the die was limited to one to two hours by its rate of dissolution in the melt.



Samples of all three alloys were grown by EFG with the major experimental

effort restricted to y + 6 and y/y'+ 6 alloys. In the standard, uncooled EFG

apparatus, the thermal gradient was inferred from the growth speed and was 150 to

200 0 C/cm. This value may be compared to typical gradients of less than 100 0 C/cm

normally achieved in a standard Bridgman-type apparatus. When a stream of helium

was directed against the side of the bar during growth, the gradient was found to

improve to about 250°C/cm. In comparison, a theoretical gradient of 700 0 C/cm

should be possible under ideal conditions, without the use of chills.

Methods for optimizing the gradient in EFG are discussed and would include

both modifications to the set-up and fuller exploitations to a cooling system. Thermal

gradient measurements above EFG set-ups at slightly higher temperatures, have

shown attainment of 600 0C/cm at zero growth rate.



L INTRODUCTION

Research into high temperature materials for gas turbine engines has
resulted in a steady improvement in properties, and consequently, in increased
operating temperatures. In the course of this development activity, compositional
changes have accounted for some of the improvements. Directional solidification
has been a key processing change which has resulted in improved properties through
control of the microstructure, in conventional superalloys.

Composite materials have been considered as alternatives to ordinary alloy
development, especially as the upper bounds for super alloy performance were

approached. Here a fibrous form of a strong and heat resistant material would be
used to reinforce an oxidation resistant matrix material. However, although several
low temperature composite systems have been developed, there has as yet been no
outstanding success toward achieving high temperature composite materials suitable

for turbine hardware. One of the difficulties in this approach has been the expensive

nature of the hybrid composite systems which have been considered. A second

difficulty has been choice of a fiber-matrix system in which the constituents were

mutually chemically compatible.

The formation of in situ composites by the directional solidification of

eutectic alloys has offered an approach toward optimization of system compatibility.

Work on a large number of eutectic systems has shown that while no simple systems

are available with potential for producing satisfactory properties, alloying additions

can be made which improve system properties. Further, these alloyed systems can

be solidified in steep thermal gradients, to yield composite structures potentially

capable of high performance in engine environments. Research in recent years

has therefore followed the approach of investigating the effects of alloying changes

on properties in particular systems.
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While no one material is yet available which combines all necessary proper-

ties to qualify for gas turbine application (ref. 1), two systems in particular are

considered to merit attention. One such system is the lamellar eutectic based

on additions of Cr and Al to Ni-Ni 3Cb (y + 6). An advanced variation of this system

is the y/y' + 6 alloy which contains y' precipitates to strengthen the y-phase

lamellae. A second system which is considered to possess some merit is based

on TaC with a Ni or Co based matrix. This fibrous eutectic alloy is not so far

advanced toward engine application as y/y' + 6, but is nevertheless of exceptional

interest.

Processing of directionally solidified alloys has been primarily by the

Bridgman method (ref. 2). This area is one in which problems exist in -sorne cases

and in which flexibility and improvements could follow from the advances in pro-

cessing techniques. Thus, for example, mold-metal interactions which produce a

skin effect in some alloys, the ability to produce shapes, and the ability to produce

steep thermal gradients are examples of problems or limitations of conventional

processing which might be expected to be improved by processing changes.

This report describes an initial investigation of the feasibility of applying a

new method of processing, edge-defined, film-fed growth (EFG), to the growth of

eutectic alloys chosen from two classes of alloys named above. The basis charac-

teristics of and requirements for, EFG are given in Appendix A. Our objectives were

to show that die materials essential for EFG processing, could be found, and that

directionally solidified bars could be produced using materials identified in this

investigation.

EFG processing has potential for directional solidification of eutectic alloys

for the following reasons:

* The absence of a crucible in the region undergoing solidification

removes an important impediment to heat removal and should allow a concoritant

gain in thermal gradient and thus, growth rate.

* The capability of growing shaped bodies directly could lead to cost

savings by not requiring a new mold and core for each piece grown.

* The capability of growing hollow shapes directly could result in

more attractive growth rates since heat can be extracted from the center as well

as the edges of the shape.

4



* The configuration of the heat flow is likely to produce axial heat
flow and thus a superior structure.

The emphasis in this study has been to investigate candidate die materials in
order to find one or more materials best suited for growth of the y/l' + 6 and Co-
TaC alloys considered. Criteria here were chemical compatibility and wettability.

In the second half of the investigation, growth trials emphasizing the effect of setup

variables on structure were carried out.

5



II. EXPERIMENTAL PROCEDURE

2.1 Alloy Selection and Preparation

Three alloys were considered in this investigation and are listed in Table I.

These alloys represent two major classes of lamellar and fibrous eutectic alloys

which are considered to have potential merit. The first alloy was used in most of

the initial growth trials while the y/y' + 6 and Co-TaC alloys were studied in the

optimization phase of the growth trials.

Table L Alloy Compositions

Weight percent

Alloy Ni Cr Co Cb Al Ta C

S+6 76.5 - - 23.5 - -

/7y' +6 71.8 6 - 19.7 2.5 - -

Co-TaC 25 15 47.2 - 12 0.8

PRECEDING PAGE BLANK NOT FILMED
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Master melts of the three alloys were prepared by melting, in high purity

alumina crucibles, the charge elements with purities noted in Table IL Appropriate

quantities of each element or compound were placed in the crucible within the

vacuum induction melting apparatus. The system was evacuated, flushed, and back-

filled with Ar. Each alloy was heated until observed to be molten, then held at

approximately 100 0 C above the liquidus for 15 minutes before turning off the power.

Alloys for the compatibility trials were cooled in the crucible. Alloys used for growth

trials were poured into a chilled quartz crucible. Ingots prepared in this way were

then surface ground and sliced into sizes appropriate for compatibility or growth

experiments.

2.2 Compatibility and Wetting Trials

Various carbides, borides, nitrides, oxides, and elemental rraterials were

selected for evaluation as candidate die materials. These materials were obtained

as hot pressed discs with average dimensions of 5.1 cm. diameter and 0.65 cm

thickness, and had densities of approximately 82 to 96% of theoretical. Oxides and

elemental materials (W and C) were obtained as high purity, fully consolidated bodies.

Both coarse grained and fine grained (Poco) graphites were used.

At the beginning of the program, all of the materials available or under con-

sideration at that time were screened by means of 1 hr soak trials. In these tests,

samples were excised from the starting billets and placed on a flat alumina plate.

A small chip of metal was placed on the test coupon and the whole assembly was

heated in the apparatus shown in Fig. 1. In this setup a molybdenum susceptor

containing the sample was placed within a water-cooled, double wall quartz muffle.

The susceptor was heated by rf inductance from a coil external to the chamber.

The work was viewed by means of a window port in the chamrber facing a slot cut in

the susceptor wall, and temperature was monitored by means of a thermocouple

inserted against the bottom of the alumina plate. through the bottom of the susceptor.

The work was protected from oxidation by means of an Ar- 5% H2 gas stream flowing

through the chamber. Power was increased to bring the temperature to approximately

100 0C above the liquidus temperature of the alloy, and was held for 1 hr.

After these initial screening trials, a second series of 5 hour soak tests was

conducted on selected materials, further to evaluate their compatibility. The 5-hr

soak tests were conducted in an apparatus similar to that used in the 1-hr compatibility

trials. The most significant difference was modification of the molybdenum plug which

8



Table II. Purity of Charge Elements

Chromium
TaC Flakes Columbium Nickel Cobalt Aluminum

Ag - - 2 - -

Al - 28 <1 - -

B - <1 - - -

C 500 (free) - < 30 - - -

Ca 100 30 < 1 0.1 2

Cb 6000 - Bal -

Cd - - < 5 - - -

Co - - < 10 - Bal -

Cr - - < 20 - - -

Cu - - < 40 1 0.1 3

Fe 600 10 < 50 10 5 4

Hf - - < 50 - - -

H - 1 <5 - - -

K + Na 100 - -

Mg - < 20 < 1 0.1 0.2

Mn - < 20 - - -

Mo - < 20 - - -

N - 40 29 - - -

Ni - - < 20 Bal 1 0.3

O - 62 110 - - -

Pb - - < 20 - - -

Si 200 10 < 50 < 1 8 4

Sn - - < 10 - - -

Ta - 900 - - -

Ti 500 < 40 - - -

V - - < 20 - - -

W - 140 - - -

Zr - < 100 - - -

Zn - - - 3

1Alpha Inorganics
2Shield Alloy Corp.
3Teledyne, Wah Chang Co.
4 United Mineral and Chemical Corp.
5United Mineral and Chemical Corp.
6 United Mineral and Chemical Corp.



- -- Moly Cap Shield

Test Alloy

,- Test EFG Die Candidate

Alumina Plate

Moly Susceptor

S- Moly Plug

------ - - Thermocouple

Fig. 1. Wetting test setup
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fits within the susceptor to accept three 1-cm radius crucibles in drilled recesses.

In this way, the sample, a metal-ceramic-metal sandwich, could be contained with

good thermal contact to the heater, and more than one combination could be run

simultaneously.

Tests were carried out as follows. A ceramic chip was sandwiched between

two lumps of metal and placed in a small, stabilized zirconia crucible. In practice,

one of the three alloys was chosen and combined with three different ceramics to

fill the three stations in the setup. After suitable purging and evacuation of the

furnace, the temperature was raised to 100 0 C greater than the alloy melting

temperature and held for 5 hrs.

Upon the conclusion of either 1 hour or 5 hour compatibility trials, samples

were evaluated by visual and by metallographic examination. Contact angles were

measured and a qualitative measure of interaction was determined from the

appearance of the microstructure.

2.3 Growth Apparatus and Trials

2.3.1 Pulling Frame

Growth experiments were conducted using a modified Czochralski puller with

a 30 cm stroke, shown in Fig. 2. The work, including a pedestal to support the setup,

the setup itself, and the seed, were contained within the quartz furnace enclosure

described above. The pulling motion was accomplished by means of a pneumatic-

hydraulic cylinder which allows a carriage to move upwards. Motion of this

carriage was controllable for a speed range of less than 0.5 cm/hr to more than

300 cm/hr. Slow growth speeds were measured using a dial indicator and a stop

watch. Faster growth speeds were measured similarly using a fixed tape rmreasure.

The seed used to initiate growth was supported from the pulling carriage by

means of a shaft which passed through a loose seal at the top of the furnace chamber.

The pedestal to support the setup is mounted on a carriage beneath the fur-

nace enclosure. This fixture is lowered to install the setup and contains provision

for gas inlet and a thermocouple.

2.3.2 Growth Setups

Growth was carried out using essentially standard EFG setups. These setups

consisted of a molybdenum susceptor, an alumina crucible to contain the melt, a

die-holding plate, and appropriate heat shielding. A thermocouple passing upwards

11



Fig. 2. Crystal growth apparatus



through the pedestal which supports the setup was inserted into an axial hole in the

bottom of the susceptor and was used as a temperature reference.

Two types of growth setups were used. Setups for rod growth where the die

was tungsten or carbon, used a molybdenum die holding plate as illustrated in

Fig. 3a. When the die was fabricated from TaC, however, a more elaborate holding

plate was required due to metal seepage through the porous die. A typical ribbon-

growing setup employing a TaC die and alumina spacers in the holding plate is shown

in Fig. 3b.

Several different die types and designs were utilized and are described in

Fig. 4, Rod-type orifices were prepared from carbon, tungsten, and TaC according

to the designs shown in Fig. 4a, b, and c respectively. Fig. 4 a was the design of

choice but was found not to be fabricable by available technology from the materials

of major interest (TaC, TiN). The design shown in Fig. 4z was not immediately

successful due to feeding difficulties and uneven thermal distribution. One modifi-

cation of this design was attempted in which three additional slots were cut at 900

intervals around the circumference.

Figs. 4d and e are the two ribbon-type dies which were fabricated and used.

The design shown in Fig. 4d was found to be fragile and was replaced by the one

shown in Fig. 4e. -The latter was modified during the course of the program to pro-

vide for the growth of wider ribbons. This was particularly advantageous for the

growth of y/y' + 6. Dimensions of the various dies utilized are listed in Table IIL

2.3.4 Growth Procedure

Prior to the start of each run, the crucible was charged with the pre-alloyed

metal, and a seed was prepared, usually from a slice of the eutectic alloy. The

crucible charge was prepared by cutting a disc of the alloy in half and grinding a

cavity at the center for the bottom of the die. This allowed maximum volume of

metal in the small setup employed. The seed was welded to a steel rod and was

positioned on the end of the pull shaft. The system was flushed with a mixture of

Ar-5% H2 . One exception to this procedure was used for experiments utilizing HfC
dies. Here, pure Ar was used until after seeding, at which time the gas flow was

switched to the standard mixture.

After flushing the system with the proper gas mixture, the temperature of

the setup was raised by means of rf power from the external coil. In some cases of

readily wetting dies, liquid is observed to appear at the top of the die feed slot when

13



Die A12 0 3 Spacer
Tungsten die Heat shields

-o- Heat Shield
Holding Plate

S- Moly crucible 2
- Molybdenum Die Holding

IPlate

A1 20 3 liner

A120 3 Crucible
- Graphite susceptor

Molybdenum Susceptor

(a)

.T- - Thermocouple Cavity

Rod growth setup utilizing all metal holding plate

(b)

Ribbon growth setup utilizing alumina spacers in the holding plate

Fig. 3. Growth setups



,b C.

Fig. 4. Die configurations used (see Table III for dimensions)

Table III. Die Dimensions (cm)

Type* Geometry 2R r rf Wf W L B

a Rod 0.32 0.12 0.051

b Rod 0.32 - 0.16

S0.32 0.051
c Rod 0.48 0.025

0.64

d Ribbon 0.025 0.05 0.58 n 19
0.037 0.19 0.58 0.19

e Ribbon 0.025 0.05 0.58 04
0.05 0.15 0.58 0.4

*See Fig. 4.
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the proper temperature was reached. In the general case, home ver, the liquid

appeared more gradually and the proper temperature was reached by noting when

seed melting on tcp of the die occurred, after the thermocouple reading had shown

the crucible to have reached the melting temperature.

Seeding was accomplished by dipping the seed into the liquid at the top of the

feed slot or by melting some of the seed to connect it with the liquid. Temperature

was then adjusted as the seed was withdrawn to achieve shape ccntrol.

16



III. RESULTS AND DISCUSSION

3.1 Die Material Evaluation

3. 1.1 Compatibility Investigations

The approach to the selection of die materials was to choose samples of the

most refractory metals and compounds from those having the greatest thermodyna-

mic stability. Tables IV to VII list all of the compound materials which were con-

sidered, and indicate those which were investigated as well as those for which

previous data are available. Table VIII presents the initial evaluation of these

materials, based on the I hr tests. These observations suggested that further

work should be confined to the nitrides and carbides since oxides were not suffi-

ciently wetted, and borides appeared reactive. The oxide materials were, however,

judged fully compatible.

On the basis of these qualitative comparisons four materials, listed in Table

IX, were selected for further evaluation including more extended compatibility trials

and orifice fabrication. The more extended compatibility trials comprised 5-hr soak

tests in which the candidate material was immersed in the liquid metal for 5-hr. In

addition, the 1-hr compatibility trial samples were re-examined in order to measure

the contact angle of the liquid metal on the ceramic.

After completion of the 5-hr soak, the samples were metallographically sec-

tioned and examined microscopically. Each sample was classified according to four

microstructural characteristics with results listed in Table IX. The extent of metal

penetration into the ceramic was judged nearly complete, extensive, or slight, in

the several cases. The extent of penetration is partly a function of the amount and

nature of porosity in the ceramic, the wettability, and also may indicate the likeli-

hood of grain boundary penetration. Surface integrity is a judgment of the degree

to which the original surface had withstood erosion or dissolution in the liquid metal.

17



Table IV. Data on Refractory Oxides

Oxide AH Kcal/mole Tm.p. C

MgO 144 2650

A12 0 3  400 2050

TiO2  226 1870

ZrO2  260 2720

HfO 2  266 2900

Cr 2 0 3  270 (2400)

Table V. Data on Refractory Carbides

Carbide AH Kcal/g-atom Approximate
Cam f .p. C

B4 C $ 14 2450

SiC 15 > 2700

TiC * 57 3140

ZrC* 48 3550

HfC * 81 3890

NbC* 33 3480

TaC* 38 3880

WC $ 8.4 -2700

*These entries were selected for evaluation.
$Data for these materials relative to similar alloys available
from previous investigation.
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Table VL Data on Refractory Nitrides

Approximate
Nitride - Hf Kcal/g-atom m.p. 0 C

BN* 60

TiN * 80.4 2950

ZrN 87.3 2980

HfN 88.2 3310

NbN 59 2050

TaN* 59 3090

WN 17 -

Table VIL Data on Refractory Borides

Approximate
Borides -AH Kcal/g-atom m.p. °C
Borides f m.p._ o

TiB2 * 24 2980

ZrB2 $ 26 3040

HfB2* - 3250

NbB2  12 > 2900

TaB2  17.5 3200

WB 2920



Table VIII. Summary of 1 hr Compatibility Trial Data

(atmosphere Ar + 5% H2)

y + /y' + 6 Co-TaC

Die and Material Wetting Gross Reaction Wetting Gross Reaction Wetting Gross Reaction

A1203 No No No No No No

ZrO2  No No No No No No

TiB2  Yes Yes Yes Yes Yes Not observed

HfB2  - Yes - Yes - Yes

TaN Yes No Yes Some Yes ?

BN Yes No Yes No - Yes

TiN Yes No Yes No Yes No

TaC Yes No Yes No Yes No

CbC Yes No Yes No Yes No

TiC Yes ? Yes No Yes No

ZrC Yes 7 Yes No Yes No

HfC Yes No Yes* No Yes No

*Wetting was observed for Ar atmosphere only.



Table IX. Results of 5-hr Soak Tests (atmosphere Ar + 5% H2 )

1loy No. 1 No. 2 No. 3

Cerami Ni-Cb Ni-Cb-Cr-Al Co-TaC

1. TiN a* Extensive Nearly complete Extensive
b Excellent Poor Fair
c Nil Moderate Nil
d Nil Nil Yes

2. TaC a Extensive Slight Slight
b Fair Fair-to-good Fair
c Slight Nil Slight
d Nil Nil Slight

3. CbC a Extensive Slight Nearly complete
b Good Fair-to-good Poor
c Nil Slight Moderate
d Nil Nil Large amounts

4. TiC a Carbide f
b Dispersed
c Throughout
d Metal

*a Extent of metal penetration into ceramic
b Surface integrity
c Grain separation
d Occurence of massive carbides or reprecipitated ceramic phase

t Not attempted.



Grain separation refers to whether or not ceramic particles had separated from the

ceramic and could be found in the metal. Finally, the fourth category notes whether

or not the microstructure of the metal is altered in the vicinity of the ceramic.

Figs. 5 through 7 display varying behavior in these four categories. Fig. 5

shows extensive penetration of the metal into the ceramic, but it retained an

excellent surface integrity, while no evidence of nitride separation or alteration

of the microstructure was found. Fig. 6 showed only partial infiltration of the metal

into the TaC ceramic, with fair retention of surface integrity and insignificant grain

separation or microstructural changes. Fig. 7 is an example of an unacceptable

combination in which the infiltration is nearly complete, the surface is poor, and

both grain separation and massive carbide precipitation have occurred.

As a result of the 5-hr soak tests, only the combinations of the TaC containing

alloy with CbC and the Ni-Cb alloy with TiC in Table IX were judged unacceptable

among those previously thought to be possible combinations. TaC and TiN were

judged a reasonable choice for any alloy, and CbC appeared feasible for all but the

TaC-containing alloy.
One other refractory compound, in addition to TaC, TiN, and CbC, was con-

sidered acceptable on the basis of tests performed later in the program. HfC had not

been available at the start of the experimental work and was subsequently investigated

later in the program. The monocarbide alloy was found to interact with HfC during a

1 hr test and produced what appeared to be a mixed carbide layer on the surface of the

alloy. Wetting was complete. L1th y + 5V and y/ Y' interacted little ith HfC in. one

hour tests. Wetting was inconsistent but was found to improve in Ar compared to Ar +

5% H2'
Additional 1 hr tests were carried out for the combinations graphite versus

y + 6, and Co-TaC, and W versus y + 6. Fine grained graphite was found to react

with y + 6 to form CbC with an effective contact angle of about 150. One test with

the Co-TaC alloy on a coarse grained graphite showed moderate erosion of the

graphite. Tungsten exhibited intergranular penetration by liquid y + 5 but the sur-

face retained its integrity. The wetting angle was close to zero. Table X summarizes

the contact angle data for six materials of interest. Here TiN was found to have the

highest contact angle, and TaC and W the lowest.

3.1.2 Preliminary Growth Trials

Growth trials were attempted using dies constructed of TiN, TaC, CbC,

HfC, W, and C, primarily with the y - 6 alloy, in order to substantiate the
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7 + o eutectic

- TiN

Fig. 5. TiN versus - + 6 alloy after 5-hr soak test in Ar + 5% H2 (X 130) 13700 C

S y/,y' + 6 alloy

& TaC

Fig. 6. TaC versus y/y,' + 6 alloy after 5-hr soak test in Ar + 5% H2 (X 130) 1380 0 C
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Co-TaC alloy

CbC

Fig. 7. CbC versus Co-TaC interface after 5-hr soak test (X 130) 1490 0 C

Table X. Contact Angle Measured on 1-hr Compatibility Samples (atmosphere
Ar + 5% H2). Tests were carried out with the respective alloys 100 0 C
Superheated.

Alloy

Cerai +  ./' + Co-TaC

TaC 0 150, soaked in ~0 °

(2 samples)

TiN 330 150 20'

NbC soaked in 140 120

lffC 20' < 200 ~ 206

w 0. N.A. N.A.

C 150 N.A. N.A.
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conclusions based on wetting and soak tests and in order to finalize the choice of die

materials for the remainder of the program. The primary emphasis of this work

was to show that one or more die materials could be used to grow the three eutectic

alloys. Table XI lists the growth runs carried out with this aim and indicate the

problem areas identified as the work progressed.

The first two growth trials in Table XI were attempted using a thin, ribbon

die TiO2 -10 TiC (Fig. 4d). The temperature was increased until the material in the

crucible was molten. However, despite attempts to melt back the seed, the liquid

could not be induced to rise in the capillary. Subsequently, the setup was taken apart

and examined. The metal was found to be heavily coated with a black skin. The die

itself had degraded to a powdery consistency.

In an effort to determine if a lower concentration of TiC in the die might

eliminate this apparent interaction, a TiO2-5% TiC substrate was heated in contact with

the same alloy. The effect on the metal was the same. Next, the same substrate was

heated in contact with the CO -TaC alloy. Again, it was observed that the alloy

formed a dark skin and did not wet the die, while the die itself continued to degrade

in integrity. It was concluded that this mixture of materials was unstable in the

required temperature range.

Next a TaC die resembling the thin die (Fig. 4d) was prepared. This die did

not taper at the top and was also raised in the setup to be nearly even with the top

heat shield. The liquid (y + 6) alloy was found to rise readily in the TaC die. Seeding

and growth were accomplished with little problem. The run failed however, as the

result of fracture of one half of the top of the die. Material grown before die failure

exhibited aligned structure at speeds of the order of 1 to 2 cm /hr.

Three runs, 707-106, 107, and 108 were carried out using the 0.38 cm

tungsten rod-type die. In the first run, the die top was again positioned even with

the top heat shield. Liquid again rose readily and seeding and growth were accom-

plished. The appearance of the solid-liquid interface was mushy, however, and the

subsequent run was carried out with a new die raised 0.05 cm above the heat shield.

That change was sufficient to make the interface appear sharp.

With the change in orifice height, control of the solidification rate became

more satisfactory and it was found that rates of growth as high as 70 cm/hr could be

achieved. The microstructures were in no cases completely lamellar, however..

Size control was also difficult as the result of a lack of temperature control.
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Table XI. Summary of Trial Growth Runs

Run No. Alloy Die Material Comments

707-97 y +6 TiO2 -10 TiC No metal feeding; no growth

707-98 y +6 TiO2 - 10 TiC No metal feeding; no growth

707-101 y +6 TaC Die broke during run; 7 cm grown. Die
top just below heat shield

707-106 y +6 W Mushy growth; die top even with heat
shield.

707-107 y +6 W Die top above shield, 16.5 cm grown

707-108 y +6 W Orifice failed

707-111 y +6 Poco No feeding; die just above die holder

707-117 y + 6 Poco Poor feeding; discontinuous growth. Die
below heat shield

707-118 -y +6 Poco Die lowered, same result

707-120 7 +6 Poco Die lowered, same result

707-121 7 +6 TaC Die well below heat shield; 26 cm grown

707-122 y + 6 TaC Metal flooded shields

707-125 y +6 TaC Seed broke after 11 cm grown

707-127 y +6 TaC 24 cm grown

707-129 y +6 TaC rf coil adjusted; 10 cm grown
707-130 v +6 Aused; 9 cm grown

707-131 y + 6 CbC Rapid die erosion; 11 cm grown

707-132 y +6 Poco Graphite No feeding; die above shield

707-133 y +6 Poco Graphite No feeding; die above shield

707-136 Co-TaC TaC rf set overloaded; 1.5 cm grown

707-137 Co-TaC TaC 7 cm grown

707-141 y/y' +6 TaC 30.5 cm grown; poor spreading

707-143 y/y' +6 TaC Coil adjusted; poor spreading 5 cm grown

707-144 y/y' +6 TaC y +6 seed used; 14 cm grown

707-148 y/y' +6 TaC Air leak ruined setup

707- 149 y/y' +6 TaC 9 cm grown; poor shape control

707-152 y/y' +6 TaC 11 cm grown; poor shape control

747-2 y/' +6 TaC 3 cm grown; aligned structure

747-30 y/v' +6 HfC 1 cm grown; poor feeding

747-31 y/y' + 6 HfC 1 cm grown; poor feeding
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Fig. 8 compares section size variations in samples 707-101 grown from a TaC die

and -107 grown from a W die. The essential points are that in both cases size control

was difficult. In the case of sample -101, however, size control was maintained after

the die broke. Shape control was somewhat easier to maintain in the sample grown

from the metal die (-107).

The tungsten die interacted with the metal more rapidly than the tantalum

carbide die. Further, the interaction was of a different kind. A sample of y + 5

in contact with tungsten was found to contain 11 wt % W after one hour exposure.

A sample of the same alloy in contact with TaC was found to contain only 37 ppm of

Ta, implying the lack of chemical dissolution.

We subsequently carried out several attempted growth runs (Nos. 707-111 to

120, and later-133 and--137) utilizing thin ribbon dies (-111 to-20) and the 0.120 cm

rod type die of Poco graphite in combination with the y + 6 alloy. In all cases,

feeding could be obtained only with difficulty and only thread-like growths were

possible when feeding could be attained. One additional run was attempted using a

TiN die. No feeding at all could be attained here.

Seven growth runs were next carried out using TaC or CbC ribbon dies of

the type shown in Fig. 5e. The first three of these runs were carried out using dies

not having the sloping shoulders shown in the figure. During these runs the pulling

speed was varied and changes in die position and rf coil position were made. In one

run, a metal ring above. the upper heat shield was utilized as an afterheater, in

order to determine if shape control could be improved.

In these runs, liquid rose to the top of the die with no subsequent difficulties

in feeding. Other setup variables in ranges investigated had only slight effects.

Growth speed was a stronger variable, both on structure and control. Shape con-

trol remained a problem with typical size variations as shown in Fig. 8 . Growth

speeds were allowed to vary between 1 and 18 cm/hr

Over the course of a growth run, the dies were found to deteriorate by

removal of material from the surface. This resulted in dimensional changes of

the growing ribbon due to the sloping shoulders on the die. Metallography of the

growth samples revealed that blocky TaC particles were embedded in the structure,

suggesting that the cause of deterioration was removal of grains rather than disso-

lution. In general, the die was considered usable for 6 to 9 hours.

A die that had been in use for 7 hrs was sectioned and is shown in Fig. 9

In part (a) of the figure, the section through one of the feed channels is shown.
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(a)

(b)

Fig. 8. Two early growth runs with they + 6 alloy, (a) TaC die, Run No. 707-101,
(b) W die, Run No. 707-107.
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(a) (b)

Fig. 9. Sections of TaC die; (a) Macrosection of TaC die after 7-hr of use (X 6),
(b) Microsection of TaC die after 7-hr of use showing grain boundary
penetration by the liquid y + 6 alloy (X 500)



Erosion at the top of the die is evident and also in the feed channel above the level

of the meniscus formed by the metal in the crucible. This erosion in the feed channel

is quite likely also due to particle erosion, suggested by the grains visible in the

liquid above that point. Part (b) of the figure shows the microstructure of the die.

Liquid has infiltrated the die body along the grain boundaries, an action made

easier by the porosity.

We next turned to the cobalt base, tantalum carbide reinforced alloy. The

setup used here was the same as that used for the y + 6 alloy with the die top 0. 14 cnm

below the top of the uppermost heat shield. Two runs were carried out, resulting in

two short ribbons being grown. No unusual difficulties were encountered.

Finally, we turned to the growth of the y/y' + 6 alloy, again using the sare

type setup, but with the top of the die raised 0.038 cm. Growth trials with this

configuration resulted in poor shape control and a mushy appearance to the growth

interface. Difficulty with freezing to the die was encountered at growth speeds less

than 3.8 cm/hr while speeds as low as 1.3 cm/hr were required to obtain a sharp

interface.

At this time the setup was revised somewhat to attempt to obtain better ther-

mal conditions. The changes incorporated were to lower the die by 0.038 cm while

removing 0.056 cm from the crucible rim. These changes left the die top approxi-

mately 0.25 cm above the holding plate while bringing the top heat shield even lower

relative to the die. In this way, the heat flow path from the holding plate was reduced

while the thermal gradient was increased. These changes were effective and resulted

in a satisfactory growth run (747-2).

HfC, despite wetting difficulties, had also appeared to show promise during

the compatibility trials and was therefore briefly investigated. Two runs, 747-30

and -31, were carried out using HfC dies and the v/' + 6 alloy. The procedure

adopted was to heat the setup under Ar to obtain wetting, then switch over to Ar + 5/c

H2 to protect the sample from oxidation during growth. In both cases, however,
only very short samples could be grown before feeding discontinued. Behavior during

growth was satisfactory.

3.1.4 Microstructures

Metallography of samples grown during this die evaluation work was carried

out in order to determine how fast samples could be grown with ordered structures

without changes to the setup. These samples were ribbon samples with thicknesses
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of the order of 0.05 to 0. 10 cm. The ranges of growth speeds which had been achieved

are listed in Table XII .

Table XIL Maximum and Minimum Growth Rates Achieved, cm/hr.

Alloy

Die Material y +6 y/y' +6 Co-TaC

TaC (CbC) 18, 1 7.2, 1 6.4 , 1.8

W 71, 2.5 N. A. N. A.

C No growth N. A. N. A.

TiN No growth N. A. N. A.

HfC N. A. 3.8, 1.5 N. A.

Although growth of y 4 6 was attempted from all but HfC of the die materials, no

significant quantities were grown from any but TaC* and W. Also, it was found

that although directional material was attained in both cases, aligned structures

resulted only in the case of growth from TaC dies. The failure to produce aligned

structures in the case of W dies was attributed to excessive dissolution of tungsten

(11%), comparatively high rates of growth, and large section thickness (0.3 cm).

During growth of y + 6 , it was found that two external indications of the

nature of the growth were observed. First, the appearance of the solid-liquid inter-

face by its sharpness was found generally to indicate whether or not the material was

aligned. Second, when fully aligned growth had been achieved, the surface of the as-

grown sample exhibited striations.

The relationship of the external features to the structure of the alloy was

determined by sectioning the alloy. Fig. 10a shows the surface of a sample where

the growth speed had been changed from 1.5 to 5.4cm/hr. Figs. 10b and c show

the transverse microstructure on either side of the speed change. The longitudinal

*During this investigation of y +6, CbC was also used as a die material. No signifi-
cant differences relative to TaC were noted.
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(a)

(b) (c)

Fig. 10. Sections on both sides of a speed change in y + 6, (a) longitudinal sur-
face structure through speed change, and transverse section at (b)
1.5 cm/hr and (c) 5.4 cm/hr. Arrow indicates point of speed change



microstructure at 5.4 cm/hr is shown in Fig. 11. Surface striae indicating a lamellar
microstructure were observed for growth speeds as high as 13 cm/hr as shown in
Fig. 12. The interlamellar spacing was determined to be approximately 6.7 and
4.3 g m at 1.5 and 6.7 cm/hr respectively.

One sample of Co-TaC was grown incorporating a speed change from 1.8 to
6.1 cm/hr. This sample (707-137) was sectioned through the speed change and was
found to undergo breakdown of the structure between these two speeds. Figs. 13a,
b, and c show the longitudinal structure and the transverse structure at 1.8 and
6.1 cm/hr. The section grown at 1.8 cm/hr is fully aligned rods with no skin effect
near the edge. The rod spacing was 3.10 Cpm at 1.8 cm/hr and 1.59 pm in the inter-
dendritic material grown at 6.1 cm/hr in agreement with extrapolated data
of Dunlevey and Wallace (ref. 3).

The early growth trials of the y y' + 6 alloy resulted in little aligned material.
When the growth conditions had been properly adjusted, the appearance of the growth
improved. Metallographic examination of sample No. 747-2 grown at 3.8 cm/hr showed
the microstructure to be fully lamellar in the transverse section (Fig. 14). The
alignment in the longitudinal section (Fig. 15) was.exceptional. The microstructure
in this case also appeared not to undergo any degradation with proximity to the sur-
face. The interlamellar spacing was found to be 2.7 j m at 3.8 cm/hr.

3.2 Optimization of EFG Growth for y/y' +6

3.2.1 Gradient Studies

One aspect of the optimization of EFG growth is a determination of the
gradient which is attained compared to theoretical. The procedure in carrying out
this study was to use the bead of a chromel-alumel thermocouple as a seed to initiate
some growth, then proceed to grow at a fixed rate while recording the output of the
thermocouple by means of a strip chart recorder. The thermocouple was formed by
the junction of two 0.07-cm dia wires and was meant to approximate the thermal

configuration of the ribbon which is nominally 0.051-cm thick. Since the junction

was of the order of 0.1 or more cm high, the initial temperature reading was

expected to be (and was found to be) a few tens of 'C lower than the alloy melting

temperature.

The gradient was determined for setups using either Mo + A12 0 3 (standard)

holding plates, or pyrolytic graphite holding plates, and growth speed was varied from
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VoIAA\<

Fig. 11. Longitudinal section of y + 6 alloy grown at 5.4 cm/hr

Fig. 12. Striae visible on surface of y + 6 grown from TaC die at 13 cm/hr
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(a)

Speed-change

(b) (c)

Fig. 13. Co-TaC alloy showing speed change from 1.8 to 6.1 cm/hr, (a) longi-
tudinal structure through speed change and transverse structure at (b)
1.8 cm/hr and (c) 6.1 cm/hr Arrow indicates speed change.

--- --



Fig. 14a. Transverse cross-section of y/y' + 6 grown at 3.8 cm/hr (X 70)
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Fig. 15. Longitudinal section of v/v, + 6 grown at 7.6 cm/hr (X 70)
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1.9 cm/hr to 7.9 cm/hr. The results are tabulated in Table XIII. When graphite

holding plates were used, the gradient increased with the growth rate. Three results

using Mo + A1203 holding plates gave scattered figures, including the sharpest

gradient measured 923 °C/cm. For comparison purposes, a theoretical gradient

was calculated based on the assumption that lateral heat loss by radiation from the

ribbon surface was the rate controlling step in determining the gradient. These cal-

culations are presented in Appendix B.

3.2.2 Thin Ribbon Growth Rate

A series of growth runs was carried out to determine the fastest growth speed

which was attainable with a fully aligned structure for the Vy/' + 6 alloy in the

standard setup and to investigate the effect of more efficient heat transfer to the die

on shape control and growth rate. These runs are listed in Table XIV.

Run 747-4 was carried out for the purpose of determining if the lamellar

structure could be maintained at speeds of greater than 3. 8 cm/hr. This sample

was grown at 7.6 and 15 cm/hr. Results were that the structure became cellular -

dendritic at 7.6 cm/hr (Fig. 15) and completely dendritic at 15 cm/hr.

Table XIIL Thermal Gradient Study

No. Holding Plate Growth Speed (cm/hr) Gradient (MC/cm)

747-7 Graphite 1.9 350

-12 Mo-A12
0

3  4.4 923

-15 Mo-A120 3  3.8 642

-17 Mo-A12
0

3  7.9 610

-18 Graphite 3.6 498

-19 Graphite 3.8 517

-20 Graphite 3.8 530

-21 Graphite 7.9 687
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Table XIV. Thin Ribbon Growth Runs with y/y' + 6 and TaC Dies

Growth Rate
Run No. Configuration (cm/hr) Comments

Aligned, dendritic structure increasing
747-4 Same as 747-2 (see p. 28) 7.62 - 15.2 with growth rate.

747-5 Pyrolytic graphite holding plates 3.8 Poor structure

747-23 Pyrolytic graphite holding plates N. A. Die failed

747-24 Pyrolytic graphite N. A. Solid mass atop die

747-25 P. G. + heavy top heat shield N. A. Would not spread

747-26 Mo +A1 20 die holder + 3.8 - 7.62 Would not spread

heavy top 4eat shield

747-27 Mo + A12 0 3 die holder + 3.8 - 7.62 Would not spread
heavy top heat shield

747-29 (see page 28) 3.8 + various Aligned structure at 3.8 cm/hr.



The setup as used here differs from setups used for sapphire mainly in that

the die itself is ceramic, and is therefore a comparatively poor thermal conductor,

and also in that the die is coupled to the system by means of the alumina separators

used in the die holding plate (Fig. 3). Thus the overall effect is that the conditions

for holding the top of the die isothermal are probably not as favorable as in an all-

metal system. One aid in overcoming this difficulty would be increasing the efficiency

of thermal transport to the die from the holding plate. Pyrolytic graphite holding

plates were fabricated and used to prepare growth setups. Three trials (runs 747-5,

23, and 24) were carried out in this manner with a wide range of growth speeds.

None of the resulting structures was satisfactory.

During these runs, it was observed that solidification occurred on top of the

die forming a skin and that liquid flowing up through the center froze above this skin.

A new thick top heat shield designed to supply heat by radiation to the top of the die

and meniscus was constructed as shown in Fig. 16. The edge of this piece, being

wider and closer to the rf coil, is heated and transports heat inward toward the top

of the die. The thick shield replaced the conventional heat shielding. Run 747-25 was

carried out in this fashion. Some reduction in freezing of the skin was noted but the

growth remained irregular. Since it now appeared that the graphite could not be

tolerated in the system at all, the molybdenum and alumina holding plates were

restored, and additional runs were carried out with the thick cap. These runs were

also not successful. The setup was then restored to the standard configuration (747-2,

p. 28) and confirmed that composite structure could be reproduced at 3.8 cm/hr.

3.2.3 Thick Ribbon Growth Runs

All previous ribbon growth runs had been carried out using ribbon dies which

were 0.05 cm. thick before eroding.* A new die configuration was designed in which

the die remained 0.6 cm wide but was made 0.15 cm thick. Besides being more

representative of a realistic section thickness, it was anticipated that this die might

erode more slowly and lead to a smaller change in section size. These dies were

combined with the standard setup using alumina spacers and molybdenum die holders.

Fourteen growth runs, listed in Table XV, were conducted using the thick

ribbon dies and with the purposes of establishing the growth rate for plane front

growth and of improving the shape control attainable. Growth rates of 0.6 to 18 cm/hr

were achieved. Metallography showed that plane front growth was achieved for growth

*Fig. 4e.
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Fig. 16. Thick top heat shield
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OF POOR QUALITY

42



Table XV. Thick Ribbon Growth Runs with y/y' + 6 and TaC Dies

Growth Rate
Run No. Configuration (cm/hr) Comments

747-33 Standard 3.8, 13 Fair shape control

747-35 Die slightly lower 13 Fair shape control

747-37 Same as -33 15 Fair shape control

747-38 Die closer to heat shield 12.7 Fair shape control

747-40 Same as -33 6.1, 15 Poor shape control

747-42 Same as -33 10, 15 Fair shape control

747-45 Same as -35 3.8, 7.6 Seed shifted

747-46 Standard - Die failed

747-47 Standard 15, 7.5, 3.8

747-48 Standard 3.8 Poor shape control

747-49 Standard - Die failed

747-50 Standard 0.64, 2.5, 7.5, 15 -

747-60 Standard 2.5 13 cm bar, good shape control

747-62 Standard 2.5 14 cm bar, good shape control

*In standard setup, die is approximately 0.13 cm below top heat Shield.



rates up to 2.5 cm/hr. At faster rates of growth the structure remained directional

but became dendritic. The structure for growth speeds of 0.64, 2.5, 12.5 and 15 cm/hr

is compared in Figs. 17 to 19.

During all of the above runs, the parameters pulling speed and growth

temperature were systematically varied to obtain their effect on structure. This

made it difficult to obtain uniform dimensions in the bars grown. Two runs, the

last two in Table XV, were carried out under constant growth conditions, resulting

in two long bars of constant geometry. One of these bars is shown photographed in

Fig. 20.

3.2.4 Effect of Helium Cooling

A simple arrangement for cooling the sample during growth was constructed

and used for a single experiment, 747-52. This experiment utilized a standard

ribbon die (0.15 x 0.6 cm, nominal) and standard setup other than the cooling

arrangement. The latter was comprised of a glass tube arranged so as to direct a flow

of helium from two directions onto the surface of the ribbon during growth. Growth

rate was varied from 1.27 to 15.2 cm/hr. Reasonable dimensional stability was

possible for growth speeds up to 7.62 cm/hr. The sample grown was 14.6 cm long

and was distinguishable from the normal dull gray samples by having a bright straw-

colored surface.

Sections of this sample which had been solidified at 1.3, 2.5, 3.8, 5.1

6.4, 7.6, and 15 cm/hr were metallographically examined. Inspection of trans-

verse and longitudinal sections showed that the bar had substantially aligned

structure for growth speeds up to 6.4 cm/hr. When no helium cooling was utilized,

such structures, in 0.15 cm thick bars, were not attained at speeds above 2.5

to 3.8 cm/hr, Fig. 21a and b illustrate the breakdown of the structure in sample
747-52, when growth speed increased from 6.4 to 7.6 cm/hr.

At these growth speeds, using helium cooling, the element of die design was

reflected in the structure of the bar. In simplest terms, the structure was best aligned
where the bar grew above the solid portion of the die. Fig. 22 shows part of the

transverse cross-section of the bar grown at 6.35 cm/hr. Fig. 23 illustrates the

relationship of the structure to the die. It is concluded that this relationship is partly

a function of die design and partly of the rudimentary nature of the cooling scheme.

That is, more efficient cooling of the solid (rather than blowing gas at only one point)

would help to eliminate the structural breakdown over the liquid.
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Fig. 17a. Microstructure of y7/' + 6 grown at 0.64 cm/hr (747-50), (a) through-
the-thickness. Longitudinal section X 70. TaC particles from the die
are evident at the top of the figure
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Fig. 18a. Longitudinal sections at 90* to each other of ./y' + 6 grown at
2.5 cm/hr, (747-50), (a) section parallel to broad face of
ribbon (X 70) 49
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Fig. 18b. Section perpendicular to broad face, at center (X 70)
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(a)

(b)

Fig. 19. Microstructure of ./' + 6 grown at speeds greater than 12.5 cm/hr,
(a) Longitudinal section near surface of sample grown at 15 cm/hr
(X 140); (b) transverse section of sample at 12.5 cm/hr. Note in-
creased dendrite content at center (X 35) (747-50).
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Fig. 20. Photograph of sample No. 747-60
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~~n Fig. 21a. Longitudinal microstructdlre in sample of y/y' +t 6, 6.35 cm/hr



Fig. 21b. Longitudinal microstructure in sample of y/y' + 6, 7.62 cm/hr (X 300)
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Fig. 22. Transverse microstructure in sample of v/y' + 6 grown at 6.35 cm/hr,
(X 110). Compare with schematic diagram in Fig. 23.

_________________-_____Area photographed
XX l I " in Fig. 22

VERTICAL LIQUID FEED

Fig. 23. Relationship of structural degradation of die design 57
Area photographed in Fig. 22



3.2.5 Rod-Growth Experiments

The final series of experiments utilized circular rod-type orifices with

diameters of 0.32, 0.48 and 0.64 cm. These orifices, Fig. 4e, were simply solid

cylindrical rods of TaC with a longitudinal slot of 0.025 or 0.051 cm width cut along a

radius. This series of experiments was attempted in order to determine the relation-

ship between growth speed and section size in a simple geometry. The trials which

were attempted are listed in Table XVI.

In the initial experiment, the feed slot was 0.051 cm in a 0.318 cm die.

Difficulty in feeding was experienced. The subsequent experiment utilized a 0.025 cm

feed slot in the same size die. Liquid rose to the top of the die and several short

pieces were grown at 2.5 and 7.6 cm/hr. Feeding was erratic, and attempts to grow

at slower speeds were unsuccessful.

Two more growth experiments were carried out using the 0.476 cm dia. die

with four 0.025 cm wide slots spaced around the circumference. Feeding was better

but attempts to stabilize growth at the necessary slow speeds were unsuccessful.

Table XVI. Rod Growth Runs with Slotted TaC Dies and y/y' + 6

Run No. Configuration Comments

747-53 0.32 cm dia TaC, 0.05 cm Difficulty in getting feeding;
4 slot, die otherwise closely orifice broke up.

similar to standard ribbon
setup

747-54 0.48 cm dia TaC die. Poor feeding, short erratic
0.025 cm die slot, other- growth at 7.6 and 2.5 cm/hr
wise same as 747-53

747-57 Same as 747-54 Same result - slightly better
spreading.

747-57 0.48 cm dia TaC die, Better feeding. Ragged growth at
four 0.025 cm die slots slow speeds (< 2.5 cm/hr)

747-59 Same as 747-57 Would not spread
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IV. CONCLUDING REMARKS

4.1 Die Materials

The investigation of the die materials showed that several materials showed

evidence of sufficient chemical compatibility to be used as die materials. In general,

those materials having the largest (negative) heats of formation appeared the most

stable and included the oxides and nitrides as well as HfC, TaC, and CbC. Borides

in general were found to be quite reactive. Since judgments were made on the basis

of microscopic examination of the one hour or, in a few cases, five hour compatibility

samples, it could only be concluded that these combinations showed at least limited

mutual compatibility. Experience was later gained in the use of alumina crucibles

to contain each of the three melts and in attempting to use a TiN die in combination

with the liquid y + 6 alloy. In these cases indeed the expectation of chemical com-

patibility was fulfilled.

The tendency toward a particular die material being wetted was opposite to

the tendency to be compatible. Thus, the oxides, nitrides, and carbides showed a

tendency towards wetting in the order cited. Of these materials, the oxides showed

wetting angles of the order of, or greater than, 90*, while the nitrides showed con-

tact angles of 15 to 33o . The carbides CbC and TaC showed contact angles of 150 or

less while HfC was similar, providing hydrogen (in the case of y/y' + 6) was absent

from the atmosphere. Capillary rise was observed only in the case of the carbides.

This fact was surprising since calculations indicate that capillarity would be reduced

only by about 16% when the contact angle is increased from 0O to 330. Growth runs

were conducted only when the liquid rose spontaneously in the die.

Interactions between the die materials and the eutectic liquids were observed

to be of four types. The oxides seemed not to interact at all, an ideal situation. In

the case of the nitrides and of TaC and CbC, in combination with the liquid of y +6 or
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y/y' +6, the interaction was apparently slight and was usually rrarked by intergranu-

lar penetration of the liquid into the ceramic. Analysis of the y + 6 alloy confirmed

that TaC had not dissolved in it to any significant extent. Tungsten and all of the

borides tried were found to be significantly soluble in the liquid alloys. Analysis of

a y +6 sample grown from a tungsten die showed approximately 11 weight percent

tungsten present. Boride-containing melts were not quantitatively analyzed but were

qualitatively noted as being in this category. The final category was the group of

materials which were found to react with a particular melt, forrring a coating on the

substrate. Two examples of this behavior were HfC with the Co-TaC alloy and

carbon with y + 6. In both cases a carbide coating was formed on the ceramic. The

formation of such surface interaction layers is not considered deleterious.

Final evaluation of several candidate die materials was carried out by growth

trials. Materials from each of the above categories, except the non-interacting

oxide materials, were tested. These trials showed that spontaneous capillary rise

was observed only from dies fabricated of TaC, CbC, HfC, and tungsten. Graphite

and TiN dies could be filled only by melting back the seed or other artificial means.

This failure of spontaneous wetting to occur was surprising. However, it is of much

greater importance that de-wetting does not occur once the die has been filled. Thus,

while materials such as TiN would require a technique to obtain initial capillary rise,

the surface tension would nevertheless be expected to operate to maintain shape con-

trol.

The final result of the die evaluation study was that TaC was selected to

carry out the major portion of the growth trials. This material provided spontaneous

capillary rise while maintaining chemical compatibility. This material, as well as

other hot pressed ceramics, was found to be less than fully dense, and therefore,

admitted liquid, spongelike, into the pores. Due to a low dihedral angle, grains

were separated from the ceramic and resulted in erosion of the die in use. Individual

hot pressed TaC discs had densities in the 85 to 92% of theoretical density range and

yielded die lives of 6 to 8 hrs of continuous running. No firm correlation between

density and die life was established but it was concluded that densities greater than

92% would have been required for a conclusive test.

Several avenues of approach could profitably be followed for future work on

die materials. TaC is satisfactory but for the erosion of blocky carbide grains into

the eutectic structure. The effect of carbide structure (grain size and density) , on
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this problem has not been determined. HfC is the second carbide material with

potential applicability, especially for the monocarbide reinforced alloy. In this case,

growth trials would be required to establish the effect on the growth behavior of the

TaC - HfC interaction on the die surface.

The nitrides of the Group IV B metals also represent potentially useful die

materials. TiN was partly investigated and gave promising results. ZrN and HfN

which were not investigated represent choices of even greater thermodynamic

stability and higher melting temperature. It is likely that all of these materials

would require artificial die filling techniques but would exhibit contact angles sub-

stantially less than 900.

Oxide materials may represent the best long range choice for the die ma-

terials with the best possible combination of long life and satisfactory compatibility.

Both oxides investigated in this program were found to be nonwetting (i.e., > 901.

However, preliminary indications are that oxides such as Cr20 3 are wetted with

contact angles less than 900. Further, y/y' + 6 melts which were held in A1 20 3

crucibles developed a scalloped interface along the periphery of the crucible with

the contact angle alternately greater or less than 90'. It therefore seems quite

likely that oxides or oxide alloys could be found which exhibited satisfactory contact

angles. It would be expected that gas pressure would be used to fill such dies, a

technique we have investigated in another system.

4.2 Growth Trials

Growth experiments were carried out and established that each of the three

eutectic alloys could be grown by EFG utilizing TaC dies. Several general comments

can be made based on these growth trials. First, in several important respects, the

growth of the metal eutectics resembled that of other ceramic materials which we

have grown. Thus, with the fully wetted die material, the melt was found to rise

in the die feed slot so that establishing seed contact with the liquid was not a problem.

The size and shape of the seed was found to bear no relation to the size and shape of

the crystal grown so that a complicated seed would not be required to grow a shape.

Unlike the growth of ceramic systems, changing setup configuration, growth

speed, or temperature could often be seen to affect the interface resulting in mushy,

fibrous, or sharp appearance of the interface. Due to the lower thermal conductivity

of the TaC die and A120 3 spacers compared with standard metal parts used, for

example, in sapphire growth, some differences in the spreading behavior of the
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liquid on the die top were noted. Thus the effect of high thermal conductivity in the

metal assemblies is to make the die tend to be isothermal on top so that simple

temperature adjustments can be made to obtain full spreading of the liquid. This

condition was found to be more difficult to reach in the present case. Nevertheless,

use of appropriate shielding and more careful (manual) temperature control rrade it

possible to obtain regular geometries.

Since the vertical alignment and magnitude of the temperature gradient are

most critical in the growth of eutectic composites, comments on the progress with

these important variables are in order. Calculation of the gradient in the solid at

the interface (see Appendix A) showed that if heat transfer at the surface of the

sample by radiation to the environment were the rate limiting step, then a ribbon

sample 0.1 cm thick should be able to exhibit a gradient of the order of 700°C/cm

This value is in quite reasonable agreement with the range of values found by direct

gradient measurements using a thermocouple seed (Table XIID.

A second method for experimental gradient determination is by calculation

based on the critical G/R ratio and the maximum growth speed. Dunlevey and

Wallace (ref. 3) report growth of the Co-TaC alloy in a furnace having a 90C/cm

gradient at 0.7 and 3 cm/hr. On this basis, our gradient would lie between 55 and

198 oC/cm. The minimum gradient to growth rate ratio for the y/,' + 6 alloy is cal-

culated from (ref. 4) to be 40 0C hr/cm2 . Our maximum growth rate for planar front

solidification of this alloy was 3.8 cm/hr giving a gradient of at least 152 C/cm.

Thus, the gradient for the uncooled apparatus is of the order of 152 to 198°C/cm,

and falls short by about 2/3 of the calculated value. The experiment utilizing a

primitive helium cooling device in this program indicated that substantial improve-

ments in growth rate can be attained, in this case 6.3 cm/hr and 254°C/cm respectively.

By comparison, conventional Bridgman solidification of this alloy yields plane front

solidification breakdown at 1.3 to 2.5 cm/hr (ref. 5) while the most advanced and

optimized Bridgman would seem to permit planar front solidification rates of

7.5 cm/hr.

Several reasons for gradient limitation in the present instance can be stated.

First, the calculated gradient, besides assuming values for critical parameters such

as surface emissivity which could be in error, was based on the dual assumptions that

heat was lost by radiation to a non-reradiating environment, and that thermal con-

ductivity to the surface was not rate-limiting. The first of these assumptions is not
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true since in all experiments with y/y' + 6, the die top was positioned below the top

heat shield, and at least part of the heat shield was hotter than the top of the die.

Thus, raising the die and changing the configuration of the heat shield to make it a

sink would both be effective means of improving the gradient. Use of chilling devices

also appears to be a promising method of heat removal. In this case, heat could be

removed both from. the crystal and from the heat shield by the same gas flow. The

method of chilling would be based on a chill placed around the growing crystal and a

gas flow between the chill and the crystal.

63



VI. REFERENCES

1. "Directionally Solidified Composites," National Materials Advisory Board,
Division of Engineering National Research Council, Pub. No. NMAB-301,
Washington, D. C., April 1973.

2. P. W. Bridgman, "Method of Growing Large Single Crystals," Proc. Amer.
Acad. of Arts and Sciences, 60 (1925) 307.

3. F. M. Dunlevey and J. F. Wallace, "The Effect of Thermal Cycling on the
Structure and Properties of a Co, Cr, Ni-TaC Directionally Solidified
Eutectic Composite," NASA CR-121249, Sept. 1973.

4. F. D. Lemkey, "Eutectic Superalloys Strengthened by 6, Ni 3 Cb Lamellae
and y', Ni 3 A1 Precipitates, " NASA CR-2278, Nov. 1973.

5. P. M. Curran and J. S. Erickson, "Directional Solidification of Ni 3 Cb Rein-
forced Eutectic Turbine Blades, "Third Quarterly Progress Report on
Contract N00019-73-C-0252, Jan. 1974.

PRECEDING PAGE BLANK NOT FILMED

65



APPENDIX A

Description of EFG Processing

67 pAG

67



APPENDIX A

DESCRIPTION OF EFG PROCESSING

The edge-defined, film-fed growth process (EFG) is a new method of crystal

growth which has been developed by Tyco Laboratories, Inc. A most noteworthy

characteristic of the EFG processing technique has been its adaptability to multiple

and rapid growth modes which has resulted in its being competitive not only with

other methods of crystal growth, but even with other standard methods of materials

processing and fabrication.

The earliest crystal growth experiments which led to the development of this

method were aimed at the development of a process to grow single crystal sapphire

filaments. These experiments were successful and resulted in the production of

high strength (refs. A1, A2) sapphire filaments more than 400 feet in length with

diameters of about 10 mils. One of the important tasks in this work was the develop-

ment of a system of size and shape control so that the filaments would be regularly

and precisely shaped. Success in meeting this requirement was followed by recogni-

tion that the method we used to control shape had far more general applicability and

could, in fact, be used to produce much more complicated shapes.

The operation of the EFG process depends in two ways on the behavior of

liquid films on solids which they wet. First, capillary rise is used to transport

liquid from the main reservoir to the top of a die; then the surface tension is used

in another way to hold the liquid film at the edges of the die while crystal growth is

carried out.

Consider a solid rod with a fine, axial capillary, placed vertically in a pot

of a liquid which wets the solid. Under these conditions, the liquid will rise in the

capillary a distance determined by its radius, the surface tension of the liquid, its

contact angle on the solid, and its density. In the case of liquid metals, the distance

that the liquid will rise, when the solid is wetted, has been observed to be of the

order of 1 in. or greater when the capillary is of the order of a few tens of mils

diameter. These relationships are shown in Fig. Al.
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y = surface tension
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r = radius of capillary
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Fig. A 1l. Behavior of liquids in contact with solids

a. Liquid droplet on a solid which it wets. No. 3 shows equilibrium
contact angle (liquid stationary); No. 1, liquid retreats; No. 2,
liquid advances.

b. Relationship between capillary rise, surface tension, and contact
angle.
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If the solid rod rises a distance above the liquid in the pot which is less than

the distance that the liquid could rise, then the situation becomes as shown in Fig. A2

In Fig. A2, the liquid is shown having just risen to the top of the capillary in the rod.

By itself, the liquid cannot flow over the edge of the capillary onto the top surface of

the die, since the contact angle above the top surface would determine spreading

(see Fig. Ala).

In Figs A2b through e, the necessary operations to cause the liquid to spread

are shown. A solid seed of the same material as the liquid is dipped into the liquid.

This seed is then withdrawn and the temperature is adjusted so that the liquid begins

to freeze on the end of the seed. As the seed is withdrawn, the liquid is drawn up-

wards, as shown, so that the equilibrium contact angle on the top surface is exceeded.

Now the liquid begins to spread, and as it does so, the solid growing from it also

becomes wider. The liquid is ultimately bounded by the extreme edges of the die,

since, once the liquid has spread that far, it cannot flow around the corner for the

same reasons that it could not flow over the top edge of the capillary.

Thus, the size and shape of the growing crystal are controlled by the external

dimensions of the top of the die. But additional controls are also possible. Consider

the die shown in Fig.A3,for example. Here a capillary in a solid rod is again used

to conduct liquid to the top die surface. In this case, however, the top die surface

has been modified by a blind hole drilled into it. During seeding, the liquid will

spread to this hole, but will stop at its edge since it cannot distinguish a blind hole

from an outside edge. Thus, the crystal, which grows only above the liquid film,

will grow with a hollow cavity above the blind hole, niirroring its cross-sectional

shape.

Consideration of the mechanism described in the last section shows that the

basic requirements for crystal growth by the EFG method are that the liquid must

wet the die material without reacting with it. In a great many cases, these condi-

tions are readily met, and we have applied this method of crystal growth to a

large number of crystalline metals, alloys, ceramics, ceramic-alloys, and semi-

conductors. However, we have recently analyzed the situation which occurs when

the contact angle shown in Fig. Al is greater than zero. Our analysis, backed by some

experimental work, is that zero, or close to zero contact angles are a convenience

rather than a necessity for EFG growth. Thus size and shape control are possible

in other than fully wetting systems.
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Fig. A2. Sequence of events during seeding
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Fig. A3. Method of growing a cavity in a solid rod
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APPENDIX B

Thermal Gradient - Limited by Radiative Heat Transfer

The thermal gradient was calculated for two cases: that of a cylindrical

crystal and that of a ribbon-shaped crystal. In both cases the assumption was made

that radiative heat transfer from the surface was the rate limiting step in heat re-

moval

We begin by calculating the solid gradient which can be attained in a circular

cross-section crystal based on the assumption that thermal conductivity, trans-

versely in the crystal, does not limit the rate of heat removal. Fig. B-1 shows the

heat flow in such a crystal. Attribution in the heat flow here is caused by radiative

heat loss from the surface.

At steady state:

Q1 -Q2 = R (1)

Since axial heat flow at any given point is determined by the thermal gradient at

that point, Q1 or Q2 can be found from

Qi = -kr 2 (-"x (2)

where k is the thermal conductivity of the solid. Also:

QR = 2E Tr rT 4 Ax (3)

where E is the emissivity of the surface and a is the Stefan-Boltzmann constant.
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Fig. I1. Heat flow in solidifying rod
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Equation (1) can now be restated as follows:

-kr - ( ) = 2E a T 4 Ax (4)

Since, by definition:

Lim [(dT \ (dT d2 T
Ax-*O dx 2 \dx) 1

Ax

then:

d2T 2Ea T 4
= (5)

dx2  kr

This basic equation, (5), describes the temperature distribution in a rod under

conditions where heat enters at one end and is lost to a non-reradiating environ-

ment along the sides.

Equation (5) can be integrated directly:

dT= + + 2B (6)
dx I

where A = - and B is the constant of integration. B is determined to be zero
kr dT

by the boundary condition that d- = 0 when T = O0, and a minus sign is chosen to

yield the proper direction of heat flow. Thus, the final expression for the gradient

in the solid becomes:

dT - 2AT5 1/  (7)
dx 5

The next step to determine the gradient in the liquid as a function of the

gradient in the solid is also a heat flow balance, at the solid-liquid interface. The

gradient in the solid, Eq. (7), multiplied by the thermal conductivity represents

the rate of heat transportted vertically through the solid at this interface. This

differs from that in the liquid by the difference in thermal conductivity between

liquid and solid, and by the latent heat of solidification. The thermal expression is:
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k = k 1 I 1  + L - R (8)

where subscripts s and 1 refer respectively to solid and liquid values, L is the latent

heat of solidification, and R is the growth rate. This expression can then be rearranged

to give \ dx!) 1 as a function of k-)s and the growth.

Thus:

dT 1 dT -L R] (9)
dx 1 k s d s

This equation has no unique numerical solution for \d since a value for R is not

specified. In order to obtain a solution, one can plot x 1 versus R from

Eq. (9) for a particular alloy and then find the intersection of this line with -j I
versus R from the relationship that (- 1XR, where G/R is a constant

dx 1 R min min
for any particular alloy.

Equation (9) has been evaluated for values of 1 in two stages: first,

by solving Eq. (7) for s-) as a function of different values of r between 0.025

and 2.5 cm. These values were then used to calculate values of dT for several
4 -4 ( -values of R between 3.53 x 10 and 70.6 x 10 cm/sec. Results of these several

calculations are presented in the following tables B-1 and B-2. The physical con-

stants used are listed in Table B-3.

We now go on to the case of the ribbon geometry which is more equivalent

to the work described in this report. Fig. B -2 describes the heat flow in the case

of a ribbon crystal with heat loss by radiation from the surface. Again, the heat

balance is the same (Eq. 1), while the individual terms become:

Qi - kwt dT1
idx i (10)

and

QR = 2E a (w + t) T4 Ax (11)
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Table B-1. Calculated Values (dT) for Rod Geometry
dx s

r (cm) (dT/dx) s (*C/cm)

0.0254 1403

0.127 627

0.254 442

0.635 280

0.127 198

2.54 140

Table B-2. Calculated Values of , C/cm

r = 2.54
R in./hr R cm/sec r = 0.0254 r = 0.127 r = 0.254 r = 0.635 r = 1.27 cm

-4
0.5 3.53 x 10-4  2540 1130 792 497 360 242

-4
1 7.06 x 10- 4  2530 1120 780 485 336 229

-4
5 35.3 x 10- 4  2430 1010 676 381 232 125

-4
10 70.6 x 10- 4  2300 883 546 251 102 < 0

Table B.-3. Value of Physical Constants Used in Calculations

Constant Value

E 0.4

U 1.355 x 10 - 12 cal/sec cm2 K4

ks 0.066 cal/sec cm 'K

kj 0.036 caL/sec cm 'K

L 157 g cal/g

Tm 1500 "K

p 8.49 gms/cm3
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Fig. B 2. Heat flow in an opaque, ribbon-shaped crystal
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where w and t are the width and thickness of the ribbon and the other terms have been

defined, Eq. 1 for the ribbon now becomes:

-kwt d 1 \dx 2 = 2E a (w +t) T 4 Ax (12)

Whence, as before:

dT 2MT (
dx 5 (13)

where

M = 2Ea (w +t)/kwt

Eq. (13), which is the gradient in the solid, is calculated for various sizes of ribbons

with the results listed in Table B-4. These results are used in Eq. (9), then, to

obtain values of the gradient in the liquid. Those results are given as a function of

growth speed and ribbon thickness in Table B-5. Since the ribbon geometry has a

greater surface to volume ratio for a given cross-section area than a cylindrical

rod, its predicted value of Gs should be greater. For example, a ribbon 0.05 x 1 cm
-2

has a cross-sectional area of 5 x 10 which is essentially the same as a rod,

0.127 cm radius. The calculated values of Gs for these two cases are 1020 and

627cC/cm, respectively.
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Table B-4. Calculated Values of (dT) for Ribbon Geometry

dT
dT C/cm

W (cm) t cm) dx s

0.6 0.05 1040

1.0 0.05 1020

1.0 0.05 1000

0.6 0.1 762

1.0 0.1 741

1.0 0.1 710

0.6 0.2 577

1.0 0.2 547

10 0.2 504

0.6 0.3 499

1.0 0.3 465

10 0.3 414

0.6 0.5 428

1.0 0.5 387

10.0 0.5 324

Table B-5. Calculated Values of( d-) f

Ribbon Dimensions, cm

R in./hr. R cm/sec 0.05 x1 0.1 x 1 0.2 x 1 0.3 x 1 0.5 xl

0.5 3.53 x 10- 4  1850 1340 923 834 692

1.0 7.06 x 10- 4  1830 1320 910 821 687
-4

5.0 35.3 x 10-4 1730 1220 867 717 575

10.0 70.6 x 10-4  1600 1090 737 587 445

83



DISTRIBUTION LIST

Mr. J. Acurio - MS 77-5 Mr. J. C. Freche - MS 49-1
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Dr. R. L. Ashbrook - MS 49-3 Mr. S. J. Grisaffe - MS 49-3
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Mr. C. P. Blankenship - MS 105-1 Mr. R. W. Hall - MS 49-1
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Dr. H. R. Gray - MS 49-1 Dr. H. B. Probst - MS 49-3
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Miss T. D. Gulko - MS 49-3 Mr. J. W. Weeton - MS 49-3
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Mr. F. H. Harf - MS 49-3 (10) Contracts Section B - MS 500-313
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Mr. M. Quatinetz - MS 49-3 Patent Counsel - MS 500-113
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44.135 Cleveland, Ohio 44135

Dr. C. W. Andrews - MS 49-3 Technology Utilization - MS 3-19
NASA Lewis Research Ctr. NASA Lewis Research Ctr.
21000 Brookpark Road 21000 Brookpark Road
Cleveland, Ohio 44135 Cleveland, Ohio 44135

Mr. G. M. Ault - MS 3-13 Mr. G. C. Deutsch/RW
NASA Lewis Research Ctr. NASA Headquarters
21000 Brookpark Road Washington, D. C. 20546
Cleveland, Ohio 44135



Distribution List (continued)

Library Library - Reports - MS 202-3

NASA Goddard Space Flight Ctr. NASA Ames Research Ctr.
Greenbelt, Maryland 20771 Moffett Field, California 94035

Mr. E. Hasemeyer Acquisitions Branch (10)
NASA S & E-PE-MWM NASA Scientific & Tech.
Marshall Space Flight Ctr. Information Facility
Huntsville, Alabama 35812 Box 33

College Park, Maryland 20740
Technical Library/JM6
NASA Johnson Space Ctr. Mr. W. J. Schultz
Houston, Texas 77058 AFML/Headquarters

Wright Patterson AFB, Ohio 45433
Library
Nasa Flight Research Ctr. Capt. D. W. Zabierek
P. O. Box 273 A FAPL/TBP - Headquarters

Edwards, California 93523 Wright Patterson AFB, Ohio 45433

Library - MS 60-3 (2) Mr. D. J. Veichnicky AMXMRR
NASA Lewis Research Ctr. Army Materials and Mechanics Res. Ctr.
21000 Brookpark Road Watertown, Massachusetts 02172
Cleveland, Ohio 44135

Mr. R. J. Schaefer
Report Control Office - MS 5-5 Code 6350
NASA Lewis Research Ctr. U. S. Nav. Res. Lab.
21000 Brookpark Road Washington, D. C. 20390
Cleveland, Ohio 44135

Mr. R. E. Trabocco
Lt. Col. H. L. Staubs Physical Metall. Branch
AFSC Liaison - MS 501-3 Nay. Air Dev. Ctr.
NASA Lewis Research Ctr. Warminster, Pennsylvania 18974
21000 Brookpark Road
Cleveland, Ohio 44135 Dr. E. G. Zukas

Los Alamos Sci. Lab.
Mr. J. Maltz/RWM P. O. Box 1663
NASA Headquarters Los Alamos, NM 87544
Washington, D. C. 20546

Mr. F. Wood
Library - MS 185 Dept. of Interior
NASA Langley Research Ctr. Bureau of Mines
Langley Field, Virginia 23365 P. O. Box 70

Albany, OR 97321
Library
NASA Marshall Space Flight Ctr. Mr. J. R. Lane
Huntsville, Alabama 35812 Materials Adv. Bd.

Nat. Acad. of Sciences
Library - Acquisitions 2101 Constitution Ave.
Jet Propulsion Lab. Washington, D. C. 20418
4800 Oak Grove Drive
Pasadena, California 91102



Distribution List (continued)

Dr. D. R. Rossington Mr. J. M. Dickinson
Suny College of Ceramics University of California
Alfred University Los Alamos Sci. Lab.
Alfred, NY 14802 P. O. Box 1663

Los Alamos, NM 87544
Dr. R. I. Jaffee
Battelle Memorial Inst. Mr. T. Z. Kattamis
505 King Avenue School of Engineering
Columbus, Ohio 43201 University of Connecticut

Storrs, CT 06268
MCIC
Battelle Memorial Inst. Dr. D. L. Albright
505 King Avenue Dept. Met. & Mat. Engrg.
Columbus, Ohio 43201 Ill. Inst. of Techn.

Chicago, IL 60616
Dr. A. Yue
Department of Metallurgy Dr. W. R. Kraft
University of California Dept. Met. & Matl. Sci.
Los Angeles, California 90024 Lehigh University

Bethlehem, PA 18015
Prof. A. Lawley
Dept. of Metall. Engrg. Prof. N. J. Grant
Drexel University Dept. of Metallurgy
Philadelphia, PA 19104 Mass. Inst. of Technology

Cambridge, MA 02139
Dr. W. Hertzberg
Dept. Met. & Matl. Sci. Dr. B. F. Oliver
Lehigh University Dept. Chem. & Met. Engrg
Bethlehem, PA 18015 University of Tennessee

Knoxville, TE 37916
Prof. M. C. Flemings
Dept. of Metallurgy Dr. T. T. Courtney
Mass. Inst. of Technology University of Texas
Cambridge, MA 02139 Matls. Sci. Lab.

Austin, Texas 78712
Prof. G. S. Ansell
Rensselaer Polytechnical Inst. Mr. B. Goldblatt
Troy, NY 12100 Avco Lycoming Div.

550 S. Main Street
Mr. H. E. Boyer Stratford, CT 06497
AM. Society for Metals
Metals Park Dr. J. Denny
Novelty, OH 44073 Beryllium Corporation

P. O. Box 1462
Mr. D. J. Maykuth Reading, PA 19603
Battelle Memorial Inst.
Cobalt Information Ctr. Library
505 King Avenue Chrysler Corporation
Columbus, OH 43201 Defense-Space Group

P. O. Box 757
Detroit, MI 48231



Distribution List (ccntinued)

Mr. R. E. Engdahl Dr. R. F. Kirby
Deposits & Composites Inc. Garrett Air Research
1821 Michael Faraday Dr. Dept. 93-393
Reston, VA 22090 402 S. 36th Street

Phoenix, AR 85034
Dr. Y. P. Telang
Materials Development Dr. M. F. Henry
Ford Motor Company CRD
One Parklane Boulevard General Electric Co.
Dearborn, MI 48126 P. O. Box 8

Schenectady, NY 12301
Dr. M.G. Benz
CRD Techn. Information Ctr.
General Electric Company AEG
P.O. Box 8 General Electric Co.
Schenectady, N Y 12301 Cincinnati, Ohio 45215

Mr. J.L. Walter Dr. C. A. Bruch
CRD AEG/GED
General Electric Company General Electric Co.
P. O. Box 8 Cincinnati, Ohio 45215
Schenectady, NY 12301

Library
Mr. D. M. Goddard Materials Science Lab. W5
Aerospace Corporation Detroit Diesel Allison
P. O. Box 95085 General Motors
Los Angeles, CA 90045 Indianapolis, IN 46206

Dr. K. A. Jackson Mr. W. H. Freeman
Bell Telephone Labs. Superalloy Group
600 Mountain Avenue Howmet Corporation
Murray Hill, NJ 07974 Whitehall, MI 49461

Dr. S. T. Wlodek Mr. R. C. Gibson
Stellite Division International Nickel Co.
Cabot Corporation Merica Research Lab.
1020 W. Park Ave. Sterling Forest
Kokomo, IN 46901 Suffern, NY 10901

Dr. D.L. Sponseller Dr. L. Kaufman
Climax Molybdenum Company Manlabs, Inc.
1600 Huron Parkway 21 Erie Street
Ann Arbor, Michigan 48106 Cambridge, MA 02139

Mr. C. Zweben Mr. R. A. Alliegro
E. I. Dupont & Co. Refractories Division
Textile Fiber Dept. Norton Company
Wilmington, Delaware 19898 Worcester, MA 01606



Distribution List (continued)

Dr. W. Sutton Dr. F. D. Lemkey
Special Metals Corporation United Aircraft Corp.
New Hartford, NY 13413 Research Laboratories

East Hartford, CT 06108
Library
Materials Technology Dr. R. H. Barkalow
TRW Equipment Group Pratt & Whitney Aircraft
23555 Euclid Avenue United Aircraft Corp.
Cleveland, OH 44117 400 Main Street

East Hartford, CT 06108
Dr. M. Herman
Detroit Diesel Allison DV Dr. M. L. Gell
P. O. Box 894 Pratt & Whitney Aircraft
Indianapolis, IN 46206 United Aircraft Corp.

400 Main Street
Dr. E. E. Reynolds East Hartford, CT 06108
Technical Ctr.
General Motors Corp. Dr. K. D. Scheffler
Warren, MI 48090 Pratt & Whitney Aircraft

United Aircraft
Dr. R. F. Decker 400 Main Street
International Nickel Co. East Hartford, CT 06108
One New York Plaza
New York, NY 10004 Dr. E. R. Thompson

United Aircraft Corp.
Technical Information Ctr. Research Laboratories
Matls. & Science Lab. East Hartford, CT 06108
Lockheed Research Labs.
3251 Hanover Street Dr. J. S. Erickson
Palo Alto, Cal. 94304 Pratt & Whitney Aircraft

United Aircraft Corp.
Mr. C. E. Nelson 400 Main Street
National Beryllia Corp. East Hartford, CT 06108
First and Haskell Ave.
Haskell, NJ 07420 Dr. G. R. Leverant

Pratt & Whitney Aircraft
Dr. G. Garmong United Aircraft Corp.
Rockwell International 400 Main Street
Science Ctr. East Hartford, CT 06108
Thousand Oaks, California 91360

Dr. R. H. Hopkins
Dr. T. Piwonka Westinghouse Research Lab.
Materials Technology Beula Road
TRW Equipment Group Pittsburgh, Pennsylvania 15235
23555 Euclid Avenue
Cleveland, OH: 44177

Dr. P. S. Kotval
Union Carbide - Research Institute
Tarrytown, NY 10591




